Monday, January 25, 2016

ExcUseMe: Asking Users to Help in Item Cold-Start Recommendations


Summary

This paper is mainly about the solution of item cold start problem in the real world recommender system. In an on-line recommender system, the cold start problem is caused by lacking of the historical data to generate meaningful suggestions. In other words, the cold start problem can be treated as the user or item that newly enter into the system. In general, the cold start problem was solved by include new context or content features. However, in this paper, the author focus on the specific solution for collaborative filtering (CF). Their idea is conducting a small scale user experiment to those users who might interested in the new item. The user interaction within the experiment can be used as a reference for the new item recommendation.

The major challenge behind this idea is: Who is the target user? In this paper, they proposed a novel algorithm "ExcUseMe". The authors assumed the user is randomly visited the online recommender system. In this continuing user stream, the system required to determine who should be included in the new item experiment. The approach can be divided into two stages: 1) the learning phase; 2) the selection phase. In 1), the algorithm is computing the likelihood of the user provide feedback of the item. In stage 2), the user is selected by their likelihood ranking. The vector similarity between the users are also considered in a semi-greedy manner.

The experiment simulated the real world on-line setting, they sampled the n% users as selection pool. The performance was evaluated by RMSE (Root-mean-square deviation) metric for three large scale datasets. The baseline was compared with Random, Frequent Users, Distance and Anava approaches. The experiment result indicated the proposed ExeUseMe algorithm outperform all the baseline models, moreover, with a lower computational cost. The experiment result also pointed out the importance and contribution of positive feedback from users. In other words, the key to drive this method as a meaningful output is the user participants.

This paper highlight a new approach for CF to solve the cold start problem. Besides, this approach is also practical that can be adopted into the real world on-line system. The main contributions of this paper are 1) the real-world user selection method; 2) efficiency algorithm and 3) the high model performance in most of the scenarios. There are some comments in this paper: 1) this algorithm is valuable in an on-line experiment setting, but the experiment is simulated with off-line setting and dataset. A further simulation experiment can better demonstrate the advantage of this approach; 2) the data filtering section limited the user with between 20 - 300 ratings. This setting reduced the probability to provide useful suggestions for long-tail items; 3) In real-world recommender system, the small amount of user feedback lead to the result of a recommendation. There might be some incentive to inverse control the experiment result in some ways.

Reference


Michal Aharon, Oren Anava, Noa Avigdor-Elgrabli, Dana Drachsler-Cohen, Shahar Golan, and Oren Somekh. 2015. ExcUseMe: Asking Users to Help in Item Cold-Start Recommendations. InProceedings of the 9th ACM Conference on Recommender Systems (RecSys '15). ACM, New York, NY, USA, 83-90. DOI=http://dx.doi.org/10.1145/2792838.2800183


Tuesday, January 19, 2016

Relescope: An Experiment in Accelerating Relationships

Reading Summary

To help people to digest the information is always an interesting research question. In this paper, the author tried to produce a 1-2 page short report to the conference attendees based on their previous works. This report provided a meaningful relationship network of the conference and aim to better determine the suitable social activity during the conference, for example, to recognize and talked to people. The author sends out the questionnaire to examine the validity of the report. The survey showed the effeteness of this application. Moreover, the newcomer of the conference is benefited more than the senior participants.

This implication reminds a fundamental way of human to digest information: the "device" to provide personalized information to users. The paper is published in the year 2005. At that time, since the cell phone is not popular with the public yet, the author sends out the application result by paper. Sometimes, the small piece of paper might be useful and convenient for people to access and carry the information during the conference. This is the reason, until today, the paper handout is still the most necessity in an academic conference.

The paper-based approach is with the natural limitation - update the information and interaction. Besides, it is also hard to collect user behavior or feedback based on this approach. With the most popular on mobile and wireless technology, it is possible for people to stay online all day. The social media, e.g. Facebook, Twitter and Linkedin, start to grab the attention of participants of the physical environment. People are now interacting in physical and virtual. The exploration of social community behavior is a popular research topic today. For instance, the human behavior/interaction on Twitter during a conference.

The future study might be focused on the personalized recommendation, e.g. Conference Navigator, tried to provide a personalized application interface for conference participants. However, there is still an unanswered question about how to help the newcomer of the conference to better into the environment and to their future academic career. More precisely, to promote a meaningful social connections. The way to evaluate the effectiveness of social connections is a challenge here.

Reference:
  1. Farrell, S., Campbell, C., and Myagmar, S. (2005) Relescope: an experiment in accelerating relationships. In:  Proceedings of CHI '05 extended abstracts on Human factors in computing systems, Portland, OR, USA, ACM, pp. 1363-1366, also available athttp://dx.doi.org/10.1145/1056808.1056917.